Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly.
نویسندگان
چکیده
UNLABELLED The reduction in nitric oxide (NO)-mediated vascular function with age has largely been determined by flow-mediated dilation (FMD). However, in light of recent uncertainty surrounding the NO dependency of FMD and the recognition that brachial artery (BA) vasodilation during handgrip exercise is predominantly NO-mediated in the young, we sought to determine the contribution of NO to BA vasodilation in the elderly using the handgrip paradigm. BA vasodilation during progressive dynamic (1 Hz) handgrip exercise performed at 3, 6, 9, and 12 kg was assessed with and without NO synthase (NOS) inhibition [intra-arterial N(G)-monomethyl-l-arginine (l-NMMA)] in seven healthy older subjects (69 ± 2 yr). Handgrip exercise in the control condition evoked significant BA vasodilation at 6 (4.7 ± 1.4%), 9 (6.5 ± 2.2%), and 12 kg (9.5 ± 2.7%). NOS inhibition attenuated BA vasodilation, as the first measurable increase in BA diameter did not occur until 9 kg (4.0 ± 1.8%), and the change in BA diameter at 12 kg was reduced by ∼30% (5.1 ± 2.2%), with unaltered shear rate ( CONTROL 407 ± 57, l-NMMA: 427 ± 67 s(-1)). Although shifted downward, the slope of the relationship between BA diameter and shear rate during handgrip exercise was unchanged ( CONTROL 0.0013 ± 0.0004, l-NMMA: 0.0011 ± 0.007, P = 0.6) as a consequence of NOS inhibition. Thus, progressive handgrip exercise in the elderly evokes a robust BA vasodilation, the magnitude of which was only minimally attenuated following NOS inhibition. This modest contribution of NO to BA vasodilation in the elderly supports the use of the handgrip exercise paradigm to assess NO-dependent vasodilation across the life span.
منابع مشابه
Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism.
The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgr...
متن کاملProgressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans.
In the peripheral circulation, nitric oxide (NO) is released in response to shear stress across vascular endothelial cells. We sought to assess the degree to which NO contributes to exercise-induced vasodilation in the brachial artery (BA) and to determine the potential of this approach to noninvasively evaluate NO bioavailability. In eight young (25 ± 1 yr) healthy volunteers, we used ultrasou...
متن کاملFolic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans.
Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds dur...
متن کاملBimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
To gain insight into the role of adenosine (Ado) in exercise hyperemia, we compared forearm vasodilation induced by intra-arterial infusion of three doses of Ado with vasodilation during three workloads of forearm handgrip exercise in 27 human subjects. We measured forearm blood flow (FBF) using Doppler ultrasound and mean arterial pressure (MAP) via brachial artery catheters and calculated for...
متن کاملNitric oxide-mediated vasodilation becomes independent of -adrenergic receptor activation with increased intensity of hypoxic exercise
Casey DP, Curry TB, Wilkins BW, Joyner MJ. Nitric oxidemediated vasodilation becomes independent of -adrenergic receptor activation with increased intensity of hypoxic exercise. J Appl Physiol 110: 687– 694, 2011. First published December 30, 2010; doi:10.1152/japplphysiol.00787.2010.—Hypoxic vasodilation in skeletal muscle at rest is known to include -adrenergic receptorstimulated nitric oxide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 305 8 شماره
صفحات -
تاریخ انتشار 2013